Rensselaer Polytechnic Institute (RPI)

Skip to main content

Greater Aircraft Efficiency Sought Through Improved Air Flow Control Techniques

Wind Tunnel at the Center for Flow Physics and Control (CeFPaC)

May 7, 2021

Greater Aircraft Efficiency Sought Through Improved Air Flow Control Techniques

Research grant supports study of air flow with complex geometry planes

The way that air moves over, around, or under an aircraft can greatly affect its aerodynamics. When air flow separates from the wings of a plane, for instance, the change in pressure on the vehicle can reduce pilot control or cause the aircraft to stall out. The development of more effective air flow control techniques depends on a better understanding of flow separation that occurs around aircraft of different shapes and sizes.

With the support of a three-year, $1.1 million contract from the Air Force Office of Scientific Research, engineers from Rensselaer Polytechnic Institute will study flow separation on existing planes with complex three-dimensional geometries — like the jets the Air Force currently uses — and what can be improved for aircraft of the future. Through improved aerodynamics, researchers aim to increase the efficiency, range, and even the stealth of aircraft. The Rensselaer team will be joined by researchers from the University of California Los Angeles and the University of Liverpool. 

“One goal is to make the vehicle more efficient,” said Miki Amitay, an expert in flow control techniques and the director of the Center for Flow Physics and Control (CeFPaC) at Rensselaer. “If you improve the aerodynamics, you can increase the range or the endurance. You can keep them in the air longer, or they can travel farther distances.”

Building upon their previous work in this area, Amitay and his team will use numerical methodologies and CeFPaC’s state-of-the-art wind tunnels to model and visualize air flow around complex wing configurations. Using what they learn, researchers will then test the effects of active flow techniques, such as the use of flow control actuators, to reduce flow separation.

The flow control actuators that Amitay has designed and implemented on other vehicles use small puffs of air to manipulate air flow. In addition to improving efficiency, this active flow control technique can also aid in maneuvering a vehicle by deflecting the flow without having to move physical components. This subtler approach, Amitay said, could make airplanes lighter, less complex, and even prevent a plane from being detected by radar.

“If we can do that with active techniques, then nothing is moving, but the vehicle can still turn,” Amitay said. “If you do that, then you reduce the signature, which means you can make the aircraft stealthier.” 

Contact

Reeve Hamilton
Director of Media Relations and Communications

(518) 833-4277
hamilr5@rpi.edu

For general inquiries: newsmedia@rpi.edu

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,600 students and more than 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration.