Nanotechnology and Advanced Materials

Need for Larger Space Telescope Inspires Lightweight Flexible Holographic Lens

Inspired by a concept for discovering exoplanets with a giant space telescope, a team of researchers is developing holographic lenses that render visible and infrared starlight into either a focused image or a spectrum. The experimental method, detailed in an article appearing today in Nature Scientific Reports, could be used to create a lightweight flexible lens, many meters in diameter, that could be rolled for launch and unfurled in space.

Rensselaer Welcomes Congressional Bipartisan Discussion on the Future of Energy

Faculty from Rensselaer Polytechnic Institute served as experts in an exchange of information about developments in the field of sustainable energy, large-scale environmental change, and innovative and interdisciplinary research into energy storage and smart systems in the built environment on a recent visit by two members of the U.S. Congress.

Harnessing AI To Search for New Materials With Exotic Properties

With the support of a prestigious $542,813 National Science Foundation Faculty Early Career Development (CAREER) grant, physicist Trevor David Rhone is turning to artificial intelligence to help determine which combination of elements might form new materials with interesting properties for advancing both scientific understanding and technological applications, such as data storage, spintronics, and quantum computing.

NSF CAREER Award Supports Framework for Photons as Quantum Transistors

As a candidate for the qubits — the basic units of quantum information — in quantum computers, photons have one major advantage over the electrons used in all current devices. Unlike electrons, photons, the smallest possible quantity of light, do not easily interact with their surroundings. So, unlike its electron-based counterpart, a photonic quantum device would not need to be cooled to nearly absolute zero to limit unwanted interactions. But such a device does not exist — yet.

Researchers Pioneer Microfluidics-Enabled Manufacturing of Macroscopic Graphene Fibers

A team of researchers at Rensselaer Polytechnic Institute has developed a new microfluidics-assisted technique for developing high-performance macroscopic graphene fibers. Graphene fiber, a recently discovered member of the carbon fiber family, has potential applications in diverse technological areas, from energy storage, electronics and optics, electro-magnetics, thermal conductor and thermal management, to structural applications.

Pages

Contact

For general inquiries: newsmedia@rpi.edu

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, over 30 research centers, more than 140 academic programs including 25 new programs, and a dynamic community made up of over 6,800 students and 104,000 living alumni. Rensselaer faculty and alumni include upwards of 155 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit www.rpi.edu.