Center for Biotechnology and Interdisciplinary Studies (CBIS)

Rensselaer-Designed Platform Could Enable Personalized Immunotherapy

An innovative testing platform that more closely mimics what cancer encounters in the body may allow for more precise, personalized therapies by enabling the rapid study of multiple therapeutic combinations against tumor cells. The platform, which uses a three-dimensional environment to more closely mirror a tumor microenvironment, is demonstrated in research published in Communications Biology.

Researchers Solve a Puzzle to Design Larger Proteins

A team including Rensselaer Polytechnic Institute researcher Gaetano Montelione has identified the design principles for creating large “ideal” proteins from scratch, paving the way for the design of proteins with new biochemical functions. The results were published today in Nature Communications.

Deep Learning Enables Dual Screening for Cancer and Cardiovascular Disease

Heart disease and cancer are the leading causes of death in the United States, and it’s increasingly understood that they share common risk factors, including tobacco use, diet, blood pressure, and obesity. Thus, a diagnostic tool that could screen for cardiovascular disease while a patient is already being screened for cancer has the potential to expedite a diagnosis, accelerate treatment, and improve patient outcomes. 

Rensselaer Experiment Tested on Zero-Gravity Flight

Amir Hirsa, a professor of mechanical, aerospace, and nuclear engineering at Rensselaer Polytechnic Institute, has developed a device that could yield valuable insights about the fluid mechanics at play in diseases like diabetes, Alzheimer’s, and Parkinson’s. 

Self-Built Protein Coatings Could Improve Biomedical Devices

Fouling is a natural phenomenon that describes the tendency of proteins in water to adhere to nearby surfaces. It’s what causes unwanted deposits of protein to form during some food production or on biomedical implants, causing them to fail. Researchers at Rensselaer Polytechnic Institute are harnessing this process, which is typically considered a persistent challenge, to develop a versatile and accessible approach for modifying solid surfaces.

Polymerized Estrogen Provides Neuroprotection in Preclinical Testing

A novel form of polymerized estrogen developed at Rensselaer Polytechnic Institute can provide neuroprotection when implanted at the site of a spinal cord injury — preventing further damage. This promising result, found in a preclinical model, was recently published in ACS Chemical Neuroscience, and it lays the groundwork for further advancement of this new biomaterial.  

Back to top